تفاصيل المنتج
مكان المنشأ: الصين
اسم العلامة التجارية: ENNENG
إصدار الشهادات: CE,UL
رقم الموديل: PMM
شروط الدفع والشحن
الحد الأدنى لكمية: 1 مجموعة
الأسعار: USD 500-5000/set
تفاصيل التغليف: التعبئة صالحة للابحار
وقت التسليم: 15-120 يومًا
شروط الدفع: L / C ، T / T
القدرة على العرض: 20000 مجموعة / سنة
اسم: |
محرك كهربائي PMAC |
حاضِر: |
تيار متردد |
مادة: |
الأرض النادرة ندفيب |
نطاق القوة: |
5.5-3000 كيلو واط |
الجهد االكهربى: |
380 فولت ، 660 فولت ، 1140 فولت ، 3300 فولت ، 6 كيلو فولت ، 10 كيلو فولت |
الإسكان: |
الحديد الزهر |
كفاءة: |
فوق 93٪ |
تثبيت: |
IMB3 ، IMB5 ، IMB35 |
ميزة: |
كثافة عزم دوران عالية |
مرحلة: |
المرحلة 3 |
اسم: |
محرك كهربائي PMAC |
حاضِر: |
تيار متردد |
مادة: |
الأرض النادرة ندفيب |
نطاق القوة: |
5.5-3000 كيلو واط |
الجهد االكهربى: |
380 فولت ، 660 فولت ، 1140 فولت ، 3300 فولت ، 6 كيلو فولت ، 10 كيلو فولت |
الإسكان: |
الحديد الزهر |
كفاءة: |
فوق 93٪ |
تثبيت: |
IMB3 ، IMB5 ، IMB35 |
ميزة: |
كثافة عزم دوران عالية |
مرحلة: |
المرحلة 3 |
توفير الطاقة عالية الكفاءة 3 مراحل المغناطيس الدائم PMAC المحرك الكهربائي
ما هو محرك المغناطيس الدائم المتزامن؟
محرك PM عبارة عن محرك تيار متردد يستخدم مغناطيسًا مدمجًا أو متصلًا بسطح دوار المحرك.تُستخدم المغناطيسات لتوليد تدفق ثابت للمحرك بدلاً من طلب مجال الجزء الثابت لتوليد واحد عن طريق الارتباط بالدوار ، كما هو الحال مع المحرك التعريفي.
تحليل مبدأ المزايا التقنية للمحرك ذي المغناطيس الدائم
مبدأ المحرك المتزامن ذو المغناطيس الدائم هو كما يلي: في الجزء الثابت للمحرك المتعرج إلى تيار ثلاثي الطور ، بعد تيار التمرير ، سيشكل مجالًا مغناطيسيًا دوارًا لفائف الجزء الثابت للمحرك.نظرًا لتركيب الدوار بمغناطيس دائم ، فإن القطب المغناطيسي للمغناطيس الدائم ثابت ، وفقًا لمبدأ الأقطاب المغناطيسية لنفس المرحلة التي تجذب تنافرًا مختلفًا ، فإن المجال المغناطيسي الدوار المتولد في الجزء الثابت سيدفع الدوار إلى الدوران ، الدوران سرعة الدوار تساوي سرعة القطب الدوار الناتج في الجزء الثابت.
نظرًا لاستخدام المغناطيس الدائم لتوفير المجالات المغناطيسية ، تكون عملية الدوار ناضجة وموثوقة ومرنة في الحجم ، ويمكن أن تكون سعة التصميم صغيرة مثل عشرات الواط حتى ميغاواط.في الوقت نفسه ، عن طريق زيادة أو تقليل عدد أزواج المغناطيس الدائم الدوار ، يكون من الأسهل تغيير عدد أقطاب المحرك ، مما يجعل نطاق سرعة المحركات المتزامنة ذات المغناطيس الدائم أوسع.مع الدوارات المغناطيسية الدائمة متعددة الأقطاب ، يمكن أن تكون السرعة المقدرة منخفضة مثل رقم واحد ، وهو أمر يصعب تحقيقه بواسطة المحركات غير المتزامنة العادية.
خاصة في بيئة التطبيقات منخفضة السرعة ذات الطاقة العالية ، يمكن تشغيل المحرك المتزامن ذو المغناطيس الدائم بشكل مباشر من خلال تصميم متعدد الأقطاب بسرعة منخفضة ، مقارنة بالمحرك العادي بالإضافة إلى المخفض ، يمكن تسليط الضوء على مزايا محرك متزامن مغناطيسي دائم .
لماذا تختار محركات التيار المتردد ذات المغناطيس الدائم؟
توفر محركات التيار المتردد ذات المغناطيس الدائم (PMAC) العديد من المزايا مقارنة بأنواع المحركات الأخرى ، بما في ذلك:
كفاءة عالية: تتميز محركات PMAC بكفاءة عالية نظرًا لعدم وجود خسائر في النحاس الدوار وتقليل خسائر اللف.يمكنهم تحقيق كفاءات تصل إلى 97٪ ، مما يؤدي إلى توفير كبير في الطاقة.
كثافة الطاقة العالية: تتميز محركات PMAC بكثافة طاقة أعلى مقارنة بأنواع المحركات الأخرى ، مما يعني أنها يمكن أن تنتج طاقة أكبر لكل وحدة حجم ووزن.هذا يجعلها مثالية للتطبيقات حيث تكون المساحة محدودة.
كثافة عزم دوران عالية: تتميز محركات PMAC بكثافة عزم دوران عالية ، مما يعني أنها يمكن أن تنتج المزيد من عزم الدوران لكل وحدة حجم ووزن.هذا يجعلها مثالية للتطبيقات التي تتطلب عزم دوران عالي.
انخفاض الصيانة: نظرًا لأن محركات PMAC لا تحتوي على فرش ، فإنها تتطلب صيانة أقل ولها عمر أطول من أنواع المحركات الأخرى.
تحكم محسّن: تتمتع محركات PMAC بتحكم أفضل في السرعة وعزم الدوران مقارنةً بأنواع المحركات الأخرى ، مما يجعلها مثالية للتطبيقات التي تتطلب تحكمًا دقيقًا.
صديقة للبيئة: تعد محركات PMAC صديقة للبيئة أكثر من أنواع المحركات الأخرى لأنها تستخدم معادن أرضية نادرة ، والتي يسهل إعادة تدويرها وتنتج نفايات أقل مقارنة بأنواع المحركات الأخرى.
بشكل عام ، فإن مزايا محركات PMAC تجعلها خيارًا ممتازًا لمجموعة واسعة من التطبيقات ، بما في ذلك السيارات الكهربائية والآلات الصناعية وأنظمة الطاقة المتجددة.
تحتوي محركات التيار المتردد ذات المغناطيس الدائم (PMAC) على مجموعة واسعة من التطبيقات بما في ذلك:
الآلات الصناعية: تُستخدم محركات PMAC في مجموعة متنوعة من تطبيقات الآلات الصناعية ، مثل المضخات والضواغط والمراوح وأدوات الآلات.إنها توفر كفاءة عالية وكثافة طاقة عالية وتحكم دقيق ، مما يجعلها مثالية لهذه التطبيقات.
الروبوتات: تُستخدم محركات PMAC في تطبيقات الروبوتات والأتمتة ، حيث توفر كثافة عزم دوران عالية وتحكمًا دقيقًا وكفاءة عالية.غالبًا ما تستخدم في الأذرع الروبوتية والمقابض وأنظمة التحكم في الحركة الأخرى.
أنظمة HVAC: تُستخدم محركات PMAC في أنظمة التدفئة والتهوية وتكييف الهواء (HVAC) ، حيث توفر كفاءة عالية وتحكمًا دقيقًا ومستويات ضوضاء منخفضة.غالبًا ما تستخدم في المراوح والمضخات في هذه الأنظمة.
أنظمة الطاقة المتجددة: تُستخدم محركات PMAC في أنظمة الطاقة المتجددة ، مثل توربينات الرياح وأجهزة تعقب الطاقة الشمسية ، حيث توفر كفاءة عالية وكثافة طاقة عالية وتحكمًا دقيقًا.غالبًا ما يتم استخدامها في المولدات وأنظمة التتبع في هذه الأنظمة.
SPM مقابل IPM
يمكن فصل محرك PM إلى فئتين رئيسيتين: محركات المغناطيس الدائم السطحي (SPM) ومحركات المغناطيس الدائم الداخلية (IPM).لا يحتوي أي نوع من تصميم المحرك على قضبان دوارة.يولد كلا النوعين تدفقًا مغناطيسيًا بواسطة مغناطيس دائم مثبت على الدوار أو بداخله.
تحتوي محركات SPM على مغناطيس مثبت على السطح الخارجي لسطح الدوار.بسبب هذا التركيب الميكانيكي ، تكون قوتها الميكانيكية أضعف من تلك الموجودة في محركات IPM.تحد القوة الميكانيكية الضعيفة من السرعة الميكانيكية الآمنة القصوى للمحرك.بالإضافة إلى ذلك ، تعرض هذه المحركات بروز مغناطيسي محدود للغاية (Ld ≈ Lq).قيم المحاثة المقاسة عند أطراف الدوار متسقة بغض النظر عن موضع العضو الدوار.بسبب نسبة الملوحة القريبة من الوحدة ، تعتمد تصميمات محرك SPM بشكل كبير ، إن لم يكن بالكامل ، على مكون عزم الدوران المغناطيسي لإنتاج عزم الدوران.
تحتوي محركات IPM على مغناطيس دائم مدمج في الدوار نفسه.على عكس نظرائهم في SPM ، فإن موقع المغناطيس الدائم يجعل محركات IPM سليمة ميكانيكيًا للغاية ، ومناسبة للعمل بسرعات عالية جدًا.يتم تحديد هذه المحركات أيضًا من خلال نسبة الملوحة المغناطيسية العالية نسبيًا (Lq> Ld).نظرًا لبروزها المغناطيسي ، فإن محرك IPM لديه القدرة على توليد عزم الدوران من خلال الاستفادة من مكونات عزم الدوران المغناطيسية والمقاومة للمحرك.
الهياكل الحركية PM
يمكن تقسيم هياكل محرك PM إلى فئتين: الداخلية والسطح.كل فئة لها مجموعة فرعية من الفئات.يمكن أن يكون لمحرك PM السطحي مغناطيسه أو إدخاله في سطح الدوار ، لزيادة متانة التصميم.يمكن أن يختلف تصميم وتصميم محرك المغناطيس الدائم الداخلي على نطاق واسع.يمكن إدخال مغناطيسات محرك IPM ككتلة كبيرة أو متداخلة لأنها تقترب من القلب.طريقة أخرى هي جعلهم مدمجين في نمط مكبّر.
تغير محاثة محرك PM مع الحمل
فقط الكثير من التدفق يمكن ربطه بقطعة من الحديد لتوليد عزم الدوران.في النهاية ، سوف يتشبع الحديد ولن يسمح بعد الآن بربط التدفق.والنتيجة هي انخفاض في محاثة المسار الذي يسلكه مجال التدفق.في آلة PM ، ستقل قيم محاثة المحور d والمحور q مع زيادة تيار الحمل.
المحاثة d و q لمحرك SPM متطابقة تقريبًا.نظرًا لأن المغناطيس خارج الجزء المتحرك ، فإن محاثة المحور q ستنخفض بنفس معدل محاثة المحور d.ومع ذلك ، فإن محاثة محرك IPM ستقل بشكل مختلف.مرة أخرى ، يكون محاثة المحور d أقل بشكل طبيعي لأن المغناطيس في مسار التدفق ولا يولد خاصية استقرائية.لذلك ، يوجد قدر أقل من الحديد للتشبع في المحور d ، مما يؤدي إلى انخفاض أقل بكثير في التدفق فيما يتعلق بالمحور q.
إضعاف / تكثيف الجريان لمحركات الجسيمات الدقيقة
يتم إنشاء التدفق في محرك مغناطيسي دائم بواسطة المغناطيس.يتبع مجال التدفق مسارًا معينًا يمكن تعزيزه أو معارضته.سيسمح تعزيز مجال التدفق أو تكثيفه للمحرك بزيادة إنتاج عزم الدوران مؤقتًا.ستؤدي معارضة مجال التدفق إلى إبطال المجال المغناطيسي الحالي للمحرك.سيحد مجال المغناطيس المنخفض من إنتاج عزم الدوران ، ولكنه يقلل من جهد التيار الكهربي الخلفي.يعمل الجهد الكهربي الخلفي المنخفض على تحرير الجهد لدفع المحرك للعمل بسرعات خرج أعلى.يتطلب كلا النوعين من العمليات تيارًا إضافيًا للمحرك.يحدد اتجاه تيار المحرك عبر المحور d ، الذي توفره وحدة التحكم في المحرك ، التأثير المطلوب.
الاستشعار الذاتي مقابل عملية الحلقة المغلقة
تتيح التطورات الحديثة في تقنية القيادة لمحركات التيار المتردد القياسية "الاكتشاف الذاتي" وتتبع موضع مغناطيس المحرك.عادةً ما يستخدم نظام الحلقة المغلقة قناة z-pulse لتحسين الأداء.من خلال إجراءات معينة ، يعرف محرك الأقراص الموضع الدقيق لمغناطيس المحرك عن طريق تتبع قنوات A / B وتصحيح الأخطاء في القناة z.إن معرفة الموضع الدقيق للمغناطيس يسمح بإنتاج عزم الدوران الأمثل مما يؤدي إلى الكفاءة المثلى.