تفاصيل المنتج
مكان المنشأ: الصين
اسم العلامة التجارية: ENNENG
إصدار الشهادات: CE,UL
رقم الموديل: PMM
شروط الدفع والشحن
الحد الأدنى لكمية: 1 مجموعة
الأسعار: USD 500-5000/set
تفاصيل التغليف: التعبئة صالحة للابحار
وقت التسليم: 15-120 يومًا
شروط الدفع: L / C ، T / T
القدرة على العرض: 20000 مجموعة / سنة
اسم: |
محرك PMSM للبيع |
حاضِر: |
تيار متردد |
مادة: |
الأرض النادرة ندفيب |
نطاق القوة: |
5.5-3000 كيلو واط |
تثبيت: |
IMB3 IMB5 IMB35 |
خدمة: |
ODM ، OEM |
سمات: |
كفاءة عالية وتوفير الطاقة وصيانة منخفضة |
درجة الحماية: |
IP54 IP55 IP68 |
يتحكم: |
بلا مجسات |
واجب: |
S1 |
اسم: |
محرك PMSM للبيع |
حاضِر: |
تيار متردد |
مادة: |
الأرض النادرة ندفيب |
نطاق القوة: |
5.5-3000 كيلو واط |
تثبيت: |
IMB3 IMB5 IMB35 |
خدمة: |
ODM ، OEM |
سمات: |
كفاءة عالية وتوفير الطاقة وصيانة منخفضة |
درجة الحماية: |
IP54 IP55 IP68 |
يتحكم: |
بلا مجسات |
واجب: |
S1 |
تحويل التردد نيوديميوم مغناطيس 3 المرحلة PMSM موتور للبيع
ما هو محرك المغناطيس الدائم المتزامن؟
المحرك المتزامن ذو المغناطيس الدائم (PMSM) هو نوع من المحركات الكهربائية التي تعمل باستخدام مغناطيس دائم مدمج في الدوار.يشار إليه أيضًا أحيانًا باسم محرك تيار متردد بدون فرش أو محرك مغناطيسي دائم متزامن.
في PMSM ، يحتوي الجزء الثابت (الجزء الثابت من المحرك) على سلسلة من الملفات التي يتم تنشيطها في تسلسل لإنشاء مجال مغناطيسي دوار.يحتوي الجزء المتحرك (الجزء الدوار من المحرك) على سلسلة من المغناطيسات الدائمة التي يتم ترتيبها لإنتاج مجال مغناطيسي يتفاعل مع المجال المغناطيسي الذي ينتجه الجزء الثابت.
عندما يتفاعل المجالان المغنطيسيان ، يدور الجزء المتحرك لإنتاج طاقة ميكانيكية يمكن استخدامها لتشغيل الآلات أو الأجهزة الأخرى.نظرًا لأن المغناطيس الدائم في الدوار يوفر مجالًا مغناطيسيًا قويًا وثابتًا ، فإن PMSMs عالية الكفاءة وتتطلب طاقة أقل للعمل من الأنواع الأخرى من المحركات الكهربائية.
تُستخدم PMSMs في مجموعة متنوعة من التطبيقات ، بما في ذلك السيارات الكهربائية والآلات الصناعية والأجهزة المنزلية.وهي معروفة بكفاءتها العالية ، ومتطلبات الصيانة المنخفضة ، والتحكم الدقيق ، مما يجعلها خيارًا شائعًا للعديد من أنواع الأنظمة المختلفة.
عمل محرك متزامن مغناطيسي دائم:
إن عمل المحرك المتزامن ذو المغناطيس الدائم بسيط للغاية وسريع وفعال عند مقارنته بالمحركات التقليدية.يعتمد عمل PMSM على المجال المغناطيسي الدوار للجزء الثابت والحقل المغناطيسي الثابت للعضو الدوار.يتم استخدام المغناطيس الدائم كعضو دوار لإنشاء تدفق مغناطيسي ثابت وتشغيله وقفله بسرعة متزامنة.هذه الأنواع من المحركات تشبه محركات التيار المستمر بدون فرش.
تتشكل مجموعات الطور من خلال ضم ملفات الجزء الثابت مع بعضها البعض.يتم ضم مجموعات الأطوار هذه معًا لتشكيل اتصالات مختلفة مثل النجمة والدلتا والمراحل المزدوجة والمفردة.لتقليل الفولتية التوافقية ، يجب لف اللفات مع بعضها البعض قريبًا.
عندما يتم إعطاء إمداد التيار المتردد ثلاثي الأطوار للجزء الثابت ، فإنه يخلق مجالًا مغناطيسيًا دوارًا وينتج المجال المغناطيسي الثابت بسبب المغناطيس الدائم للعضو الدوار.يعمل هذا الدوار بالتزامن مع السرعة المتزامنة.يعتمد العمل الكامل لـ PMSM على فجوة الهواء بين الجزء الثابت والدوار بدون تحميل.
إذا كانت فجوة الهواء كبيرة ، فسيتم تقليل خسائر انحراف القذيفه بفعل الهواء للمحرك.أقطاب المجال التي تم إنشاؤها بواسطة المغناطيس الدائم بارزة.المحركات المتزامنة ذات المغناطيس الدائم ليست محركات ذاتية التشغيل.لذلك ، من الضروري التحكم في التردد المتغير للجزء الثابت إلكترونيًا.
الهياكل الحركية PM
يمكن تقسيم هياكل محرك PM إلى فئتين: الداخلية والسطح.كل فئة لها مجموعة فرعية من الفئات.يمكن أن يكون لمحرك PM السطحي مغناطيسه أو إدخاله في سطح الدوار ، لزيادة متانة التصميم.يمكن أن يختلف تصميم وتصميم محرك المغناطيس الدائم الداخلي على نطاق واسع.يمكن إدخال مغناطيسات محرك IPM ككتلة كبيرة أو متداخلة لأنها تقترب من القلب.طريقة أخرى هي جعلهم مدمجين في نمط مكبّر.
الاختلافات بين محرك المغناطيس الدائم والمحرك غير المتزامن
01. هيكل الدوار
المحرك غير المتزامن: يتكون الجزء المتحرك من قلب حديدي وملف ، يتكون بشكل أساسي من قفص السنجاب والدوارات ذات الجرح السلكي.الدوار القفص السنجابي مصبوب بقضبان من الألومنيوم.يحرك المجال المغناطيسي لقضيب الألومنيوم الذي يقطع الجزء الثابت الدوار.
محرك PMSM: المغناطيس الدائم مدمج في الأقطاب المغناطيسية الدوارة ، ويتم دفعه للدوران بواسطة المجال المغناطيسي الدوار المتولد في الجزء الثابت وفقًا لمبدأ الأقطاب المغناطيسية لنفس المرحلة التي تجذب التنافرات المختلفة.
02. الكفاءة
المحركات غير المتزامنة: تحتاج إلى امتصاص التيار من إثارة الشبكة ، مما يؤدي إلى قدر معين من فقدان الطاقة ، والتيار التفاعلي للمحرك ، وعامل القدرة المنخفض.
محرك PMSM: يتم توفير المجال المغناطيسي بواسطة مغناطيس دائم ، ولا يحتاج الدوار إلى تيار مثير ، ويتم تحسين كفاءة المحرك.
03. الحجم والوزن
إن استخدام مواد المغناطيس الدائم عالية الأداء يجعل المجال المغناطيسي للفجوة الهوائية للمحركات المتزامنة ذات المغناطيس الدائم أكبر من المحركات غير المتزامنة.يتم تقليل الحجم والوزن مقارنة بالمحركات غير المتزامنة.سيكون حجم إطار واحد أو اثنين أقل من المحركات غير المتزامنة.
04. تيار بدء تشغيل المحرك
محرك غير متزامن: يتم تشغيله مباشرة عن طريق كهرباء تردد الطاقة ، وتيار البدء كبير ، ويمكن أن يصل إلى 5 إلى 7 أضعاف التيار المقدر ، مما له تأثير كبير على شبكة الطاقة في لحظة.يؤدي تيار البدء الكبير إلى زيادة انخفاض جهد مقاومة التسرب لملف الجزء الثابت ، وعزم دوران البدء صغير بحيث لا يمكن تحقيق بدء التشغيل الشاق.حتى إذا تم استخدام العاكس ، فيمكن أن يبدأ فقط ضمن النطاق الحالي للإخراج المقدر.
محرك PMSM: يتم تشغيله بواسطة وحدة تحكم مخصصة ، والتي تفتقر إلى متطلبات الإخراج المقدرة للمخفض.تيار البدء الفعلي صغير ، والتيار يزداد تدريجيًا وفقًا للحمل ، وعزم دوران البداية كبير.
05. معامل القدرة
تحتوي المحركات غير المتزامنة على عامل طاقة منخفض ، ويجب أن تمتص كمية كبيرة من التيار التفاعلي من شبكة الطاقة ، وسيؤدي تيار البدء الكبير للمحركات غير المتزامنة إلى تأثير قصير المدى على شبكة الطاقة ، وسيؤدي الاستخدام طويل المدى إلى حدوث أضرار معينة لمعدات شبكة الطاقة والمحولات.من الضروري إضافة وحدات تعويض الطاقة وإجراء تعويض الطاقة التفاعلية لضمان جودة شبكة الطاقة وزيادة تكلفة استخدام المعدات.
لا يوجد تيار مستحث في دوار المحرك المتزامن ذو المغناطيس الدائم ، وعامل القدرة للمحرك مرتفع ، مما يحسن عامل الجودة لشبكة الطاقة ويلغي الحاجة إلى تثبيت المعوض.
06. الصيانة
المحرك غير المتزامن + هيكل المخفض سوف يولد الاهتزاز والحرارة ومعدل الفشل العالي واستهلاك زيوت التشحيم الكبير وتكلفة الصيانة اليدوية العالية ؛سوف يتسبب في خسائر معينة في وقت التوقف عن العمل.
المحرك المتزامن ذو المغناطيس الدائم ثلاثي الأطوار يقود المعدات مباشرة.نظرًا لاستبعاد المخفض ، تكون سرعة خرج المحرك منخفضة ، والضوضاء الميكانيكية منخفضة ، والاهتزاز الميكانيكي صغير ، ومعدل الفشل منخفض.يكاد يكون نظام القيادة بأكمله خاليًا من الصيانة.
معادلة EMF وعزم الدوران
في آلة متزامنة ، يُطلق على متوسط EMF المستحث لكل مرحلة اسم المستحثات الديناميكية EMF في محرك متزامن ، ويكون التدفق المقطوع بواسطة كل موصل لكل ثورة هو Pϕ Weber
ثم الوقت المستغرق لإكمال ثورة واحدة هو 60 / نيوتن
يمكن حساب متوسط EMF المستحث لكل موصل باستخدام
(PϕN / 60) × Zph = (PϕN / 60) × 2Tph
حيث Tph = Zph / 2
لذلك ، فإن متوسط EMF لكل مرحلة هو ،
= 4 x ϕ x Tph x PN / 120 = 4ϕfTph
حيث Tph = لا.من المنعطفات متصلة في سلسلة لكل مرحلة
ϕ = التدفق / القطب في ويبر
P = لا.من أعمدة
F = التردد بالهرتز
Zph = لا.من الموصلات متصلة في سلسلة لكل مرحلة.= Zph / 3
تعتمد معادلة EMF على الملفات والموصلات الموجودة في الجزء الثابت.بالنسبة لهذا المحرك ، يتم أيضًا مراعاة عامل التوزيع Kd وعامل الخطوة Kp.
ومن ثم ، E = 4 x ϕ xfx Tph xKd x Kp
يتم إعطاء معادلة عزم الدوران لمحرك متزامن مغناطيسي دائم على النحو التالي ،
T = (3 x Eph x Iph x sinβ) / m
تحتوي محركات التيار المتردد ذات المغناطيس الدائم (PMAC) على مجموعة واسعة من التطبيقات بما في ذلك:
الآلات الصناعية: تُستخدم محركات PMAC في مجموعة متنوعة من تطبيقات الآلات الصناعية ، مثل المضخات والضواغط والمراوح وأدوات الآلات.إنها توفر كفاءة عالية وكثافة طاقة عالية وتحكم دقيق ، مما يجعلها مثالية لهذه التطبيقات.
الروبوتات: تُستخدم محركات PMAC في تطبيقات الروبوتات والأتمتة ، حيث توفر كثافة عزم دوران عالية وتحكمًا دقيقًا وكفاءة عالية.غالبًا ما تستخدم في الأذرع الروبوتية والمقابض وأنظمة التحكم في الحركة الأخرى.
أنظمة HVAC: تُستخدم محركات PMAC في أنظمة التدفئة والتهوية وتكييف الهواء (HVAC) ، حيث توفر كفاءة عالية وتحكمًا دقيقًا ومستويات ضوضاء منخفضة.غالبًا ما تستخدم في المراوح والمضخات في هذه الأنظمة.
أنظمة الطاقة المتجددة: تُستخدم محركات PMAC في أنظمة الطاقة المتجددة ، مثل توربينات الرياح وأجهزة تعقب الطاقة الشمسية ، حيث توفر كفاءة عالية وكثافة طاقة عالية وتحكمًا دقيقًا.غالبًا ما يتم استخدامها في المولدات وأنظمة التتبع في هذه الأنظمة.
المعدات الطبية: تُستخدم محركات PMAC في المعدات الطبية ، مثل أجهزة التصوير بالرنين المغناطيسي ، حيث توفر كثافة عزم دوران عالية ، وتحكمًا دقيقًا ، ومستويات ضوضاء منخفضة.غالبًا ما تستخدم في المحركات التي تقود الأجزاء المتحركة في هذه الآلات.
SPM مقابل IPM
يمكن فصل محرك PM إلى فئتين رئيسيتين: محركات المغناطيس الدائم السطحي (SPM) ومحركات المغناطيس الدائم الداخلية (IPM).لا يحتوي أي نوع من تصميم المحرك على قضبان دوارة.يولد كلا النوعين تدفقًا مغناطيسيًا بواسطة مغناطيس دائم مثبت على الدوار أو بداخله.
تحتوي محركات SPM على مغناطيس مثبت على السطح الخارجي لسطح الدوار.بسبب هذا التركيب الميكانيكي ، تكون قوتها الميكانيكية أضعف من تلك الموجودة في محركات IPM.تحد القوة الميكانيكية الضعيفة من السرعة الميكانيكية الآمنة القصوى للمحرك.بالإضافة إلى ذلك ، تعرض هذه المحركات بروز مغناطيسي محدود للغاية (Ld ≈ Lq).قيم المحاثة المقاسة عند أطراف الدوار متسقة بغض النظر عن موضع العضو الدوار.بسبب نسبة الملوحة القريبة من الوحدة ، تعتمد تصميمات محرك SPM بشكل كبير ، إن لم يكن بالكامل ، على مكون عزم الدوران المغناطيسي لإنتاج عزم الدوران.
تحتوي محركات IPM على مغناطيس دائم مدمج في الدوار نفسه.على عكس نظرائهم في SPM ، فإن موقع المغناطيس الدائم يجعل محركات IPM سليمة ميكانيكيًا للغاية ، ومناسبة للعمل بسرعات عالية جدًا.يتم تحديد هذه المحركات أيضًا من خلال نسبة الملوحة المغناطيسية العالية نسبيًا (Lq> Ld).نظرًا لبروزها المغناطيسي ، فإن محرك IPM لديه القدرة على توليد عزم الدوران من خلال الاستفادة من مكونات عزم الدوران المغناطيسية والمقاومة للمحرك.
ميزات محرك IPM (المغناطيس الدائم الداخلي)
عزم دوران عالي وكفاءة عالية
يتم تحقيق عزم دوران عالي ومخرجات عالية باستخدام عزم دوران ممانعة بالإضافة إلى عزم الدوران المغناطيسي.
عملية موفرة للطاقة
تستهلك طاقة أقل بنسبة 30٪ مقارنة بمحركات SPM التقليدية.
دوران عالي السرعة
يمكن أن تستجيب لدوران المحرك عالي السرعة من خلال التحكم في نوعي عزم الدوران باستخدام التحكم في القوة الموجهة.
أمان
نظرًا لأن المغناطيس الدائم مدمج ، يتم تحسين السلامة الميكانيكية ، على عكس SPM ، لن ينفصل المغناطيس بسبب قوة الطرد المركزي.
لماذا يجب عليك اختيار محرك IPM بدلاً من SPM؟
1. يتم تحقيق عزم دوران عالي باستخدام عزم دوران ممانعة بالإضافة إلى عزم دوران مغناطيسي.
2. تستهلك محركات IPM طاقة أقل بنسبة 30٪ مقارنة بالمحركات الكهربائية التقليدية.
3. تم تحسين الأمان الميكانيكي لأنه ، على عكس SPM ، لن ينفصل المغناطيس بسبب قوة الطرد المركزي.
4. يمكن أن تستجيب لدوران المحرك عالي السرعة عن طريق التحكم في نوعي عزم الدوران باستخدام التحكم في القوة الموجهة.
إضعاف / تكثيف الجريان لمحركات الجسيمات الدقيقة
يتم إنشاء التدفق في محرك مغناطيسي دائم بواسطة المغناطيس.يتبع مجال التدفق مسارًا معينًا يمكن تعزيزه أو معارضته.سيسمح تعزيز مجال التدفق أو تكثيفه للمحرك بزيادة إنتاج عزم الدوران مؤقتًا.ستؤدي معارضة مجال التدفق إلى إبطال المجال المغناطيسي الحالي للمحرك.سيحد مجال المغناطيس المنخفض من إنتاج عزم الدوران ، ولكنه يقلل من جهد التيار الكهربي الخلفي.يعمل الجهد الكهربي الخلفي المنخفض على تحرير الجهد لدفع المحرك للعمل بسرعات خرج أعلى.يتطلب كلا النوعين من العمليات تيارًا إضافيًا للمحرك.يحدد اتجاه تيار المحرك عبر المحور d ، الذي توفره وحدة التحكم في المحرك ، التأثير المطلوب.
اتجاه التطور لمحركات المغناطيس الدائم الأرضية النادرة
تتطور محركات المغناطيس الدائم النادرة باتجاه طاقة عالية (سرعة عالية وعزم دوران مرتفع) ، ووظائف عالية وتصغير ، وتعمل باستمرار على توسيع أنواع المحركات الجديدة ومجالات التطبيق ، وآفاق التطبيق متفائلة للغاية.من أجل تلبية الاحتياجات ، لا تزال عملية تصميم وتصنيع محركات المغناطيس الدائم الأرضية النادرة بحاجة إلى الابتكار المستمر ، وسيكون الهيكل الكهرومغناطيسي أكثر تعقيدًا ، وسيكون هيكل الحساب أكثر دقة ، وستكون عملية التصنيع أكثر تقدمًا و ملائم.